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Kondo-stabilised spin liquids and heavy fermion 
superconductivity 
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Serin Physics Laboratory, Rutgers University, PO Box 849, Piscataway, NJ 08854, USA 

Received 10 February 1989 

Abstract. We consider an SU(2) path integral formulation of a Kondo lattice model for 
heavy fermions that treats the RKKY interaction explicitly. At low temperatures we find 
the heavy Fermi liquid becomes unstable to the formation of a spin liquid amongst the f 
spins. Kondo coupling to the spin liquid stabilises it against antiferromagnetism, causing 
the resonating valence bonds of the spin liquid to occasionally escape into the conduction 
sea. This process induces off-diagonal resonant scattering in the conduction sea, thereby 
generating anisotropic superconductivity in the heavy fermion system. 

1. Introduction 

Existing theories of heavy fermion systems surmount the Nozieres exhaustion problem 
[l-31 by generating a quasi-particle f band where the f moments passively compensate 
one-another via the exclusion principle. Recent two-impurity scaling results of Jones, 
Varma and Wilkins (JVW) [4] indicate this is an unstable state-of-affairs, showing that 
in the presence of an RKKY interaction, f spins actively bind into singlets, enhancing 
the antiferromagnetic correlations beyond that determined by a quasi-particle f band. 

The JVW result suggests that an important role of the Kondo effect in heavy 
fermion systems is to provide a stable environment where the f moments can form 
short-range singlet bonds with other nearby moments, without developing long-range 
antiferromagnetic order. The f spin component of this state will be termed a ‘spin liquid’. 
In isolation, such a state is expected to be unstable with respect to antiferromagnetism, 
acquiring only a modest proportion x = E S L / E A F M  of the energy EAFM in an AFM 
ground state. However, if we suppose that in such a spin liquid there are low-lying spin 
degrees of freedom on a scale of the Kondo temperature T K ,  then singlet bonds will also 
form between conduction electrons and f spins in the spin liquid. This compensation of 
the spin liquid will lower its energy by an amount of order TK per unit cell, stabilising 
it against magnetism (figure 1). A crude criterion for a non-magnetic ground state is 
then 

The short-range bonds in a spin liquid help to lower its energy ( x  # 0), making this 
requirement less restrictive than expected on the basis of a direct comparison of the 
Kondo temperature with the RKKY interaction [5] .  Futhermore, in rare-earth systems 
TK is enhanced by spin fluctuations into the higher-lying spin-orbit multiplets of the f 
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Energy 

ESL-TK Kondo-stobilised spin l iquid 

Figure 1. Energy diagram illustrating how the energy of a spin liquid can be lowered below 
that of an antiferromagnetic state by Kondo compensation. 

states [ 6 ] ,  and x may be large due to frustrationt. A combination of these two factors 
will then tend to suppress development of conventional local moment magnetism. 

A useful way to visualise the formation of a Kondo-stabilised spin liquid is to use 
Anderson’s resonating valence bond picture [7] (figure 2). A pure spin liquid is visualised 
by linking pairs o f f  spins together into singlets or valence bonds. Spin exchange be- 
tween sites causes the ends of the valence bonds to resonate throughout the spin system 
forming a sort of ‘quantum spaghetti’. When we introduce Kondo coupling to the con- 
duction electrons, the ends of the valence bonds occasionally link up with a conduction 
electron lying within an energy TK of the Fermi level, resonantly scattering the electrons 
close to the Fermi energy. Typically, the number of conduction electrons within this 
energy is far smaller than the number of f spins, and in keeping with the Nozieres 
exhaustion principle, most of the valence bonds must stay within the spin liquid. 

Conduction e- 

f spins 

L e -  I b i  

Figure 2. Illustrating how Kondo compensation of a spin liquid results in an escape of 
the valence bonds into the conduction sea, generating singlet pairs of conduction electrons, 
thereby inducing a pairing component to the resonant Kondo scattering of conduction 
electrons. 

Occasionally however, spin exchange will occur between two valence bonds that link 
conduction electrons to f moments, causing the momentary escape of one valence 
bond entirely into the conduction sea. Such brief excursions of valence bonds into the 
conduction sea will produce resonant singlet pairing amongst low-energy conduction 
electrons, and as we shall see, this generates superconductivity in the heavy fermion 
system. 

In this paper we examine this hypothesis within a new path integral formalism, using 
a lattice model for heavy fermions that contains both RKKY and Kondo interactions. 

t In the 2D cuprate superconductors we believe a similar effect may also be taking place, where in this case 
TK should be replaced by JK and a is very close to unity. See [ 7 ] .  
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We consider a simplified Kondo lattice model, valid only at temperatures that are low 
enough for us to integrate out the bulk of the high-lying spin fluctuations and explicitly 
introduce an RKKY interaction. We further simplify the problem by considering only 
the lowest-lying Kramers doublet of f states at each site, described by a Heisenberg 
spin-; pseudo-spin operator, interacting with a sea of spin-; conduction electrons via 
a Kondo exchange interaction. Our model is then 

Here si = f t i s c s r p f i p  represents an f spin at site i ,  and ctjG = xYkCtkoexp(ik'Rj) 
creates a conduction electron in a Wannier state at site j with the same symmetry as 
the f state, where Yk is the form factor of the f state. Conduction electron energies 
are measured relative to the chemical potential. For simplicity, only nearest-neighbour 
RKKY interactions are retained. Similar models have been examined by a variety of 
authors, both in the context of heavy fermion superconductivity [16-181, and more 
recently in relation to copper oxide superconductivity [7, 81. 

2. SU(2) path integral approach 

Recently, we considered a two-dimensional variant of the above Kondo lattice model 
(KLM) in an extreme limit that we called the dual exchange model, where the conduction 
band width D is small compared with exchange interactions [8]. Here we extend that 
treatment to the opposite limit where the kinetic energy of the conduction electrons 
is the largest scale in the problem. The development of a path integral formalism is 
identical, but for clarity we shall include many more details here. 

Since f charge fluctuations have been removed, the KLM is defined within the sub- 
space constrained by the (Gutzwiller) requirement nf  = 1 at each site. The absence of 
f charge fluctuations is manifested as a local SU(2) gauge invarance of the Heisenberg 
spin operator S, [9], 

f t o  -+ cos 8 f +,, + sgna sin 8 fp0. (3) 

To illustrate this feature consider the spin raising operation S+. This process can 
proceed by first annihilating a down electron, then creating an up electron, written 
S+ = f'rfl. Alternatively, it can proceed by first creating an up electron, forming the 

accomplish the spin raising operation by an arbitrary linear combination of the above: 
nf = 2 state, then annihilating a down electron, written S+ = -fsf t t . In fact, one can 

In other words, there is no distinction between a particle or a hole when all charge 
fluctuations are removed. The SU(2) symmetry is a mathematical statement of this 
fact, and the operators f ' ~  and f l  are actually equivalent under the SU(2) group. In 
situations where the ground state is non-magnetic and the excitations are fermions, 
the SU(2) symmetry acquires great utility, and may be exploited in a path integral 
treatment to impose the constraint [9]. 
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The SU(2) symmetry implies that the constraint nf = 1 is actually a component of 
a triplet of local 'Gutzwiller constraints' 

which can be written in the compact form 

f ' i z f i = O  (6) 

by introducing the Nambu spinors f t i  = ( f t i ~ ,  f l l) .  In an exact treatment of the 
problem, satisfaction of any one of these constraints implies satisfaction of the others. 
However, within a given path integral approximation scheme, all three constraints are 
required, for satisfaction of the first at a mean field, or Gaussian, level of approximation 
does not generally imply satisfaction of the latter two constraints at the same level of 
approximation. This is especially true for a superconducting state. 

To display the local symmetry explicitly, it is useful to use a generalised Nambu 
formalism. We begin by introducing Nambu spinors for the conduction electrons and 
f spins 

(7) 

where, as before, we denote the conduction Wannier states by cj = c k  Ck exp(ik. Rj). 
It is also convenient to introduce a conjugate spinor basis 

(8) 

These two types of spinors form the columns of two matrix operators 

with 

C, = C k Y k  exp(ik. R,). 
k 

In terms of these matrices the Heisenberg spin operators in our original model can be 
written 

S, = ;Tr[S T t  F ,F,] 

(10) S,G) = ;Tr[S'C t ,C,] 

where S' denotes the transpose of the spin-; Pauli spin matrices. Under the local 
gauge transformation 
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where gj = exp(i Wj . r )  is a unitary two-dimensional matrix, the Fj also transform as 
Fj + g,Fj, F t j  + Fjtg;', so each component of the spin operator is SU(2) invariant. 

Next, using the completeness relation 

4s$ ' qv + 6,p6,, = 26,,6/3, (12) 

and the anticommutation algebra of the matrix fermion operators, 

we rewrite the interactions as 

JH(Sl 'S, - i) = -$JH Tr[F,F t JF,Ftl] = -$Jw  Tr[iiI,i2,,] 

J K c  t lUclo~(S~U~ .S I  - $6g,,~) = - $ J K  Tr[C,F t ,F,Ctl] = - $ J K  Tr[GtlO,] (14) 

where, following Affleck and co-workers we have introduced two pairing matrix oper- 
ators [9] 

ai = f'iocio bi = fiTcjJ -filcjT. 

Under the local gauge transformation f, -+ gjfj, the ai, and Cj  matrices transform as 

i3j -+ gjO, ii, -+ giiii, J gj (17) 

so that the interactions are invariant under the SU(2) transformation. 
The partition function for our model is given by 2 = Tr[Pce-"] where PG = 

rIj (n;T - nf ) 2  is the Gutzwiller projection for one f spin per site. Previous work has 
imposed this constraint as an integral over a U(l) group J S  

where we have rewritten nf (R , )  - 1 = f t j z3 f j  in Nambu notation. In actual fact, the 
SU(2) symmetry tells us that we can replace 23 by n.7 where i? is an arbitrary unit 
vector. Integrating over all possible choices n and 6' enables us to rewrite the Gutzwiller 
projection as an integral over the SU(2) group 

(n-f J T  - nf  J L  ) 2  = d[gj]dj (19) 

where d j  = exp[iftj(Wj .z ) f j ]  and Wj = 6%. The measure 

sin2 d dd di? 
d[gl = 4712 
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is the Haar SU(2) measure [lo] (for mean-field technique see p 74 in this review) and 
B E [0,2.n]. Rewriting g = igk,  (p = 0,1,2,3, to = il), permits us to rewrite this 
measure in the alternate form 

d[g] = C2 dgPd (g2 - 1) g2 = &,(gP)2. (21) 
P 

Introducing this into the partition function permits us to write it as a path integral 

k j 

where Wj = W j  '7. In the continuum time limit, the Haar measure can be replaced by 
the flat measure d3 Wj/4n2. 

To factorise the interactions we first recognise that the pairs (aij, bij)  and (!xi, pi) 
are pairs of dependent operators related by an SU(2) rotation. Let us choose Diij  = 
Tr[ i ( l  - iZ.z)Gij] and Dij as the independent operators, where iZ is a unit vector, then 

(23) J H ( s ~ . s ~  - t )  = - ; J ~ D ~ , D ~ ~ .  

We perform the Hubbard Stratonovich as follows 

-(iJH)DtijDij -+ D'ij$ + 6Dij + (2/5H)$$ 

- - -;Tr[oijGjj + hijbji] + ( l / J~)Tr[Oj jb j j ]  (24) 

= Lf'jOjjfj +HC]  + ( l /J~)Tr[0i j i" j j ]  

where $ = $x + i$y and 

Oij  = $ x ( i Z s ~ )  +i$y (25) 

is a unitary matrix with bji = otij. In the path integral we now integrate over the 
SU(2) group at sites i and j at each point in time. Under the SU(2) rotation, f j  + gjfj, 
so that we must make the replacement oij + giOijg;' inside the Lagrangian. Inserting 

1 = 1 d4Uijd(giOijgr1 - U , . )  11 

into the integral, where d4Uij = IIpdU$ is a flat measure over each of the components 
of U ,  = iUis,, (TO = i ln) ,  enables us to replace giOljgT1 by Uij in the Lagrangian. 
Next we invert the order of integration, and use the result (see Appendix) 

1 1 d[gi] d[gj] d& dqbY d(giOijg;' - U,) = ,2Tr[U ,jUi,]-l (26) 
' 2 '  .f 

71 

to determine the measure of the new variable Uii 
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where we put Uij = -iAgij, where gij is an SU(2) matrix. As before, dgij is the 
Haar measure, which becomes flat in the time continuum limit. This is a Nambu 
reformulation of the matrix fermion formalism of Affleck and co-workers [9]. 

A similar decomposition is made for the Kondo term, introducing the unitary 
pairing matrix V, conjugate to i J ~ i 3 j ,  and writing 

where integration over gi elevates 6 to an SU(2) integration variable, with measure 

d V = Vo d Vo sin2 A d% dii/2n2 

where V = VO exp(i)A. z). 
Incorporating these expressions into the path integral permits us to write 

Our model now has the following time dependent SU(2) gauge invariance 

f j  -+ gj f j  
U, -+ giuijg;' 

v, + gjvj 
wj + gj ( wj + id,) g;' 

associated with the absence of f charge fluctuations. There is also the usual elec- 
tromagnetic U( 1) gauge symmetry associated with the charged conduction electrons, 
introduced via Yk -+ y k - e ~  and ek -+ Ck-eA,  where A is the electromagnetic ficld. 

We interprete our Lagrangian as describing the motion of electrons through a 
pairing field generated by antiferromagnetic fluctuations. The V field describes the 
compensation o f f  spins by the conduction electrons, whilst the U field describes the 
mutual compensation o f f  spins (JH(S,. S, - i) = -Tr[Ut U]/Jn).  The SU(2) symmetry 
incorporates the incompressibility of the f electrons into the theory, playing the role of 
large on-site f interations. 

3. Mean-field approach 

We employ mean-field techniques similar to those developed for lattice gauge theories 
with continuous local symmetries [lo]. 

Physical quantities are SU(2) gauge invariant. The most general gauge-invariant 
operators that are local in time are the operators 



4064 P Coleman and N Andrei 

and 

The first describes the amplitude for exchange of f spins around a loop of length 
L. The second is a matrix describing the interaction amongst conduction electrons 
via the exchange of intermediate f spins. Because of our Nambu notation this term 
contains off-diagonal pairing components, which are nevertherless SU(2) invariant. 
Translational invariance implies that the expectation values of these operators are 
independent of location and dependent only on the shape and size of the the loop or 
path. 

In the mean-field approximation we replace i i i j  and G j  by their expectation values 
(filj) = ( 2 / J ~ ) U i y ,  ( C j )  = (2/5~)V,o. which need only be translationally invariant up to 
a gauge transformation [lo]. Each choice of saddle point solution for U:' and Y,") 
is a representative point on the orbit of all gauge equivalent solutions formed by the 
action of gj(s) on the Uij, vj and Wj, according to equation (31): 

Gauge invariance guarantees that all physical quantities 

calculated in the mean-field theory, in particular the mean-field free energy F [ U ,  V ,  W ] ,  
(but also the conduction electron propagator, the conduction electron pairing amplitude, 
the ring exchange operators) are invariant under this transformation, 

P ( V ,  V & ,  wg) = P [ C " O ' ,  P), W'O']. (36) 

When we average over the the gauge orbit in the path integral, all physical quantities 
remain unchanged, but all gauge-dependent quantities average to zero, thus 

(V,) = J dg = 0. (37) 

For this reason, although we unfold the interaction in terms of gauge-dependent 
fields which average to zero, the mean-field theory we use describes the physics of 
an entire orbit ojsaddle points. The only fluctuations that modify the physics are 
those perpendicular to the gauge orbit. These fluctuations cost energy, and have jinite 
zero-point oscillation frequencies that we may extract, using methods well known in 
gauge theory. 

In the calculations presented here we assume a three-dimensional simple cubic 
crystal structure, with a tight-binding conduction band of half width 6t : 

f k  = -2l(CoS k ,  + COS k,  + COS k,) - ,U. (38) 
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Furthermore, though not essential, we take the simple case of 'point-like' f states, 
where yk = 1. Finally, we restrict our attention to mean-field solutions that have the 
full crystal symmetry,  choosing a gauge that is manifestly translationally invariant. 

The most general translationally invariant gauge has the form 

U (Ri + l, Rj) = U1 = -iA exp(i0rizl. z) ( 1  = x, y ,  z )  
Vj = -iVo exp(il2. z) = V 
wj= W . 7  = w 

(39) 

where the Al ( I  = x, y , z )  are unit vectors. We apply a global SU(2) transformation 
(g = iz3 exp(-il. z)) to bring V into the form V = Voz3. The mean-field Hamiltonian 
for our ansatz is H M F  = I k y  t khkyk, where 

V W + U(k) 
hk = [ EkZ3 

with U(k) = 1, U! exp(ikl) + HC, ( I  = x, y ,  z )  and we have defined y t k  = (ptk, d k ) .  

free energy per unit cell is 
The Green function corresponding to HMF is 9k( ico , )  = (icon - hk)-'. The mean-field 

where T is the temperature. This must be stationary with respect to variations in U ,  
V and W, which generates three mean-field equations. 

0 = (ftizfi) = T Tr[z9f,f(ico,)] 

where the superscripts on 9 label the block-diagonal components. The first imposes 
the three Gutzwiller constraints, on the average, and the other two self-consistently 
determine U and V .  

By solving these mean-field equations we are carrying out a path integral version 
of the Gutzwiller approximation 

If I@)  is a ground-state wavefunction for H M F ,  then the corresponding approximation 
to the ground-state wavefunction of H is Iy) = PGI@) . If g is an arbitrary SU(2) 
transformation, then all unprojected states I y (g ) )  = gl y )  are equivalent under the 
Gutzwiller projection Iy) = PGl@(g)) . 

We now demand that the eigenvectors of h k  are invariant under 90" rotations 
k + Rk, from which it follows that hRk = +DRhkDtR, where DR is a unitary matrix. 
(The + in this equation occurs because the eigenvalues of h k  come in pairs (&, - -E@)  
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due to the spin rotational invariance of the problem.) Since DR must be k independent, 
it can be divided into four identical 2 x 2 block elements d ~ .  This implies that 

so rotations in real space correspond to orthogonal transformations in particle-hole 
space that interchange (up to an inversion) the axes RI whilst leaving the z axis 
unchanged, up to an inversion. The explicit form of U(k )  is 

U ( k )  = 2 8   COS 8 sin ki + sin 8 cos kliZ1. 7). 

1 
(45) 

Since a unit matrix is unchanged by a unitary transformation, the term proportional 
to a unit matrix cannot give rotationally invariant physics, so 8 = n / 2 .  For the trivial 
case d~ = 1, U ( k )  is explicitly rotationally invariant and the vectors $ 1  must be parallel: 
U ( k )  = 2AClcos k1iZ.t .  In the non-trivial representation d R  # 1, d R  will only leave 
the z axis unchanged (up to an inversion) for all rotations of the point group, if the 
vectors i Z1  form the prongs of a 'tripod' whose axis lies in the 2 direction, also parallel 
to W (figure 3): 

WO= wi p i / K i .  (46) 
A A  n, . n, = cos n ( i  # j )  

I 

Figure 3. Showing the configuration of the SU(2) vectors f i i  in (a) the Fermi liquid and ( h )  
the superconducting phase. 

In both cases, the mean-field Hamiltonian can be written in a more conventional 
form : 

Here 

where Afil = A z i  + ALiZIL and the A l l  lie in the x-y plane. 
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In the trivial case d R  = 1, 4 k  has s symmetry under 90" rotations 

($k = fix cos ki extended s wave. 
1 

In the non-trivial case d R  # 1, W l  = 0, Wz = W and (f)k has d symmetry 

4067 

(49) 

and the hii lie at 120" to each other. We have taken the convention h Z l  = cos @$+sin CCA 
and the sign in (f)k is the sign of ( f ix  x n y )  . ẑ  . 

We shall shortly show that exchange energy is gained when the directions of the hi 
are well separated, energetically favouring the higher symmetry state with d symmetry. 
This state will be the main focus of our attention. 

Now we diagonalise HMF in terms of two quasi-particle bands (n  = +,-), 

kn 

where (a = k) and 

The free energy may be expressed in terms of these eigenvalues as 

The requirement that F is stationary with respect to Az, A l ,  V and W generates four 
scalar mean-field equations for case (ii) 

c t a n h  ( PEkn $ = 4 v / J ~  

kn 

where 

We shall not list the mean-field equations for the unstable s-wave 

(54) 

(55) 

(56) 

state. 
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There are two phases that arise in solution of the mean-field equations: (i) a Fermi 
liquid phase and (ii) an anisotropic superconducting phase. We now discuss these 
phases in turn. 

3.1. Fermi liquid (AL = 0) 

At finite temperatures, entropy effects favour the formation of a Fermi liquid state in 
which the vectors 61 lie along the z  ̂ axis. This state is formed by the action of the 
Kondo effect which binds the low-lying conduction electrons to the f spins in singlet 
states. This process removes a spin from the f fluid, and adds a charge, thereby forming 
a charged mobile 'f hole'. Before discussing this process in detail let us first summarise 
the mean-field equations. 

The eigenenergies Ekn revert to the simpler form 

The corresponding quasi-particle operators are 

and the corresponding normal ground state would then be 

(59) 

The mean-field equations assume the following form 

Setting VO = 0 determines the temperature scale of the crossover into this Fermi liquid 
phase, which is given by TFL = ~ T K ,  where 

defines the Kondo temperature and 

Note how the exponent is correctly given for our original definition of the coupling 
constant, although the prefactor will depend on the treatment of fluctuations. As 
in earlier treatments, the mean-field theory does not contain the critical fluctuations 
required to reduce this false phase transition to a crossover. 
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To elucidate the effect of Kondo binding of conduction electrons to f spins, it 
is helpful to 'integrate out' the conduction electron degrees of freedom, defining an 
effective Hamiltonian for the f electrons. The conduction electrons introduce a self- 
energy into the f electron propagator given by 

C f ( k , w )  = v2/(0 - f k T 3 )  e t k 7 3  (0 4 VO ( T K / P O ) l I 2 )  

t k  = - v : / C k  h T K  

gf ( k ,  0) = [U - (u(k) + w + t k ) 7 3 ] - ' .  

(63) 

leading to an f propagator of the form 

(64) 

The effective Hamiltonian describing these 'f electrons' takes the form 

u(k)  + W + t k ]  exp[ik. (Ri  - I t j ) ] .  (65) 
k 

We can interprete these fermions as the charged particles formed when low-energy 
conduction electrons bind to f spins. To see that these excitations are indeed charged, 
we appeal to arguments of gauge invariance. In a slowly varying vector potential field 
A ,  Ek -+ E ~ - ~ A ,  shifting the momenta of conduction electrons by an amount e A .  Since 
V ,  = J~(c,f ' ,),  in a field V ,  acquires a phase factor vj + exp(iel'A . d v ~ 3 ) y ,  so the 
mean-field Hamiltonian takes the form 

(66) H M F  = z [ C k - e A C  t k u c k a  + vO(c t k a f k - e A  + HC) f u ( k ) f ' k a f k o ] .  

k a  

By redefining f A a  = f k + e A  a, we see that the effects of a slowly varying vector potential 
on the phases associated with resonant Kondo scattering can be absorbed by a shift 
u(k) -+ u ( k - e A ) .  In other words, the quasi-particle energies transform as E k p  + 

in a vector potential, showing that the quasi-particles do indeed carry a charge - e .  

We may regard these excitations as holes in the background o f f  spins, formed by the 
formation of singlet pairs between the conduction and f spins, in fact this interpretation 
is internally consistent, because the curvature of t k  is opposite to the curvature of the 
original conduction band. These f holes are actually composite objects in terms of the 
original model, and the SU(2) symmetry is now hidden as an internal symmetry. 

The non-local interactions in this phase contain a strong q dependence because 
of the extended nature of the RKKY interaction. These interactions induce direct 
binding between the f spins, which in our approach is modelled by the development 
of U # 0. In the high-temperature Fermi liquid regime, the mutual compensation o f f  
spins, expressed by U =  AT^, is mainly passive in nature, and would be present even 
if the RKKY interactions could be turned off. The principal effect of this term is to 
renormalise the dispersion of the f electrons over and above the contribution from the 
Kondo effect. 

At low temperatures, where the entropy associated with the low-lying excitations of 
a Fermi liquid is less important, the tripod of vectors f$ now unfolds and U acquires 
an off-diagonal component. The condition 

A L  # O  (67) 
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cannot occur without an RKKY interaction, so A 1  can be regarded as an order 
parameter signalling the development of ‘active’ mutual f spin compensation. In 
general, the conduction electron self-energy has the form 

describing resonant scattering of conduction electrons by the Kondo effect. Once 
A 1  # 0, cs acquires offldiagonal components in Nambu space, inducing ‘resonant 
superconductivity’ in the conduction fluid. 

To investigate this instability, we set A 1  = O+ in the mean-field equations, yielding 

1 / J H  = n”d(T) 

where 4id is determined by the symmetry of the pairing field, as given previously. This 
determines the superconducting transition temperature of the heavy Fermi liquid. In a 
one-band Cooper instability, the factor gkp would be weakly energy dependent and of 
order one, reflecting the constant attractive interaction between the quasi-particles in 
the vicinity of the Fermi energy. In this case 

and the strength of the attractive interaction is roughly determined by the degree.of f 
admixture in the quasi-particles, being strongest where the f admixture is higher. 

Since I$$* - id)i12 = -2(c,c, +cyc, +c,c,), if the f Fermi surface is concentrated in 
regions where Cl cos k, - 0, then the average value of (c,cy + cyc, + c,c,) is negative 
and d-wave pairing is favoured. If the f Fermi surface is situated in regions where the 
magnitude of xi cos ki is large, then (c,cy + cyc, + c,c,) is positive and extended s-wave 
pairing is favoured. In practice the former case seems to prevail becuse the f Fermi 
surface is determined by the term 2A 1, cos kl in Uk. Figure 4 displays the predictions 
of a more detailed calculation comparing the d- and s-wave transition temperatures. 
In the next section we will advance energetic reasons for the d-wave preference in this 
Cooper instability. 

It is instructive to relate this instability to the original Heisenberg interaction. The 
Heisenberg interaction may be written in the form 

JH si ’ sj = -JH (d’id);, + qkqk’ f ckck’)aTk(q)ak’(q) (71) 

where A ̂ t  k(q) = f t k+q/2tf t -k+q/21. When we integrate out the fluctuations in U ,  this 

- [Js(T)d)id);‘ + Jd(T)( l?kqk‘  + ik~k’)laPk(0)ak’(o) (72) 

(Id k, k’, q 

introduces a temperature-dependent interaction whose q = 0 component is given by 

k. k’ 
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Figure 4. Mean-field phase diagram, calculated for the case p/f = -1.5, T K / t  = 0.01. Dotted 
curves indicate crossover to a heavy Fermi liquid, full curve the calculated d-wave instability, 
chain curve the lower extended s-wave Tc instability. For completeness, the broken curve 
indicates the anticipated position of the transition between an antiferromagnet (in 30) 
and superconductor, which cannot be calculated in the current theory. Inset: variation 
of the angle 0 between the SU(2) vectors Ai as a function of temperature (U! = AA/ 'T, 
f i i  .A, = cos@. The parameters chosen were J H / T K  = 0.5, for which T c / T ~  = 0.04. Note 
how the tripod opens up as the temperature is lowered, and that even though J H / T K  < 1.0, 
the zero-temperature value of 0 is very close to the 90" favoured in the idealised spin liquid. 

where 

Thus anisotropic superconductivity is associated with a divergence in the forward- 
scattering d-wave component of the RKKY interaction. This divergence is of magnetic 
origin, in fact, when JH 2 TK, W d ( T )  - 1/4T, and we find that 

This is precisely the divergence that generates mean-field antiferromagnetism. However, 
in this case the Kondo effect pre-empts magnetism. Since formation of a magnetic 
ground state would entail losing -V:/JK of compensation energy, the system compro- 
mises by forming a Kondo-stabilised spin liquid. 

There are two regimes along the superconducting phase boundary. When JH < TK, 
T, is small, the superconductivity is weak coupling and the integral in the gap eqaution 
is dominated by the logarithmic singularity in the Cooper channel at the Fermi surface. 
Define the quasi-particle density of states 
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which is approximately given by po V:/ W’ = x /TK,  where CI is of order one . We also 
define the Fermi surface average of I @ / *  : 

Using these definitions, and putting gk 5 1 near the Fermi surface, we find that the 
weak coupling T ,  is 

where q is given by 

We see that the coupling constant is of order J H / T K :  as might expected from Fermi 
liquid arguments. 

A more extensive portion of the phase diagram is not dominated by the weak- 
coupling instability. When J H  / T K  approaches unity, the detailed dispersion of the lower 
f band ceases to be of importance in the gap equation. To get an approximate estimate 
for T ,  we consider the limit in which PEkp +. 0. Setting gkp ‘c 1, tanh(flEkp/2) rr flEkp/2, 
gives 

(In actual fact, the finite dispersion derived from Az # 0 depresses the phase diagram 
slightly below this value, as can be seen in figure 4.) In this regime, the superconductor 
can be regarded as a Kondo-stabilised spin liquid, as we now discuss. 

3.2. Anisotropic superconductor (U1 cc A I . T ,  V ,  W # 0) 
Below T,, the size of A1 grows to minimise the RKKY superexchange energy. To gain 
insight into this process it is helpful to first ignore the Kondo effect of the conduction 
electrons on the f spins. This provides us with a ‘spin liquid’ starting point with which 
we can compare the f spin correlations of the superconducting phase. Such a starting 
point only makes sense if the Kondo effect helps to stabilise the spin liquid. 

In the absence of the Kondo exchange term, there is perfect particle-hole symmetry 
in the f fluid, so W = 0. Taking A, . i?j = r, then the quasi-particle energies are 

and r = 0 maximises the sum ZkEk. The mean-field ground-state energy is Eo = 
6 A 2 / J ~  - 2 xk Ek. At the saddle point, i?Eo/dA = 0, or 6 A 2 / J ~  = ck Ek, so CI = 0 
maximises A, thereby minimising the total exchange energy - 6 A 2 / J ~ .  Thus in an 
idealised spin liquid we expect the f i l  to be orthogonal to one another [ll]. 

The Kondo exchange effectively shifts the z component of Uk according to 

A,(Cx + C j  + C,)  +. Az(Cx + C y  + C,) + W - Vg?/fk. (81) 
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However, on the average the shift in W compensates the effect of the ‘hybridisation’ 
term - v t / f k ,  since the constraint equation (f t t g f )  = O implies 

f k 

1 
O = x -  2 / E k l  ( A 2 ( c , + c Y + c 2 ) +  w-- 

k 

k 

where we have restricted our attention to the lower quasi-particle band Ek = E k - .  

Consequently, the distortion induced in the spin liquid state is minimised. Numerical 
work shows that even when the Kondo coupling is considerable, at T = 0, i?i ’ Tz, = 0 
in the superconducting ground state . 

Since the U [  of the superconducting phase are quite close to those of the spin liquid, 
this implies that short-range equal-time spin correlations in the superconductor closely 
resemble those of a spin liquid. For instance, the nearest-neighbour spin correlations 
are determined by 

Similarly, the amplitude for ring exchange Mound a single square plaquet 

is negative, as in the pure spin liquid. 
It is instructive to examine the ground-state wavefunction of our Kondo-stabilised 

spin liquid in Anderson’s RVB language. If we take the pure spin liquid, then this may 
be written in the form 

tan d k  = c Y / c , .  

A weak Kondo effect adds a perturbation H = I k ( C ’ k t 3 f k  + HC) to the mean-field 
Hamiltonian. To leading order in V , ,  this replaces 

in the quasi-particle operators, and the modified wavefunction takes the form 
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We may interprete the terms involving conduction electrons as describing the ‘escape’ 
of resonating valence bonds into the conduction sea. Thus 

is the amplitude for forming a singlet bond of length r between the conduction fluid 
and f spins, whilst 

is the pairing amplitude for total escape of a valence bond into the conduction sea. 
Whilst zcf is not SU(2) invariant, reflecting the overcomplete nature of the RVB 
basis set, this last pairing term is SU(2) invariant, and therefore survives the Gutzwiller 
projection. Consequently, the escape of valence bonds into the conduction sea generates 
a physical off-diagonal long-range order in the conduction sea. 

There is, of course, an important energetic difference between our state and a 
pure spin liquid, for the mean-field ground-state energy per unit cell contains both 
Heisenberg and Kondo components, given by 

where we have put V 2 p  - T K .  The second term arises from the Kondo effect. Thus 
although the spin correlations bear close resemblance to those of a spin liquid, the 
ground-state energy is significantly stabilised by the Kondo effect. This result also 
explains why d-wave pairing is favoured, for the d-wave instability forces the ‘arms of 
the tripod’ defined by i i l  to separate, lowering the exchange energy. 

To complete this section we remark briefly on what is to be expected when T ,  
becomes comparable with the Kondo temperature. In our mean-field approach, there 
is another phase boundary separating the superconducting state from the pure spin 
liquid state. Setting V = Ot in the mean-field equations, and taking the i i l  to be 
orthogonal, we find that an instability in V occurs at a temperature T* given by 

A similar result was obtained for two dimensions, where we do expect a spin liquid to be 
stable at finite temperatures. However, in three dimensions, we expect an antiferromag- 
netic phase transition, probably first order in nature to pre-empt the phase transition 
into a pure spin liquid state. The situation is more subtle in quasi-two-dimensional 
situations, where the interesting possibility of a second-order phase transition between 
the Kondo-stabilised spin liquid superconductor and a finite-temperature quantum 
antiferromagnet with no long-range order is not precluded. 

4. Discussion: dilute systems and quasi-particle interactions 

The notion of Kondo-stabilised spin liquids has interesting consequences for dilute 
Kondo impurity systems that shed light on the underlying mechanism of the super- 
conductivity in the dense system. The first appearance of the RKKY interaction occurs 
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in the two-impurity Kondo problem. However, the essential feature of a spin liquid, 
namely a quantum resonance of spin-singlet bonds, that is needed to gain a large 
proportion of the antiferromagnetic exchange energy, cannot develop until there are at 
least three impurity spins. Our mean-field theory gives results that are consistent with 
this reasoning. 

Consider the Heisenberg component of the mean-field theory for two and three 
equally spaced impurities 

For two impurities, the eigenvalues of H2 are k 2 A  for all values of A. In this case 
the mean-field energy in the presence of spin compensation (V = Vo~3 in the uniform 
gauge) depends only on the cosine of the angle between A and 2: E = E(cosA.z*). 
This energy is extrema1 only for U cc 73, and consequently, the conduction electron 
self-energy is diagonal. At the mean-field level, this implies that the results of an SU(2) 
analysis of the two-impurity model will correspond to those of a large-iV treatment [12]. 
In the special case considered by JVw, the conduction band is completely symmetric, 
and at the mean-field level, there is no dependence of the total energy on the angle 
between A and the 2 axis?. 

For the three-impurity case, however, we can choose the Ai to be the prongs of a 
tripod with axis along the 9 direction. In this case the MF energy eigenvalues are 

E,  = 2Al cos(p + 2 m / 3 ) 1  (n  = 1,2,3) (93) 

where sin p = ( 4 / 2 )  cos(A1 .9) . Filling the lowest three eigenstates, the mean-field free 
energy of the pure spin liquid is then - 1, E, = - 6 A  cos(p - 7c/6). The mean-field 
energy is minimised by the choice p = z / 6  for which the Ai all lie at right angles to one 
another. In this configuration, the conduction electron self-energy is off-diagonal for 
any orientation of the tripod described by t i l ,  A2 and A3 relative to the 2 axis. Of course, 
until the concentration of impurities becomes dense, fluctuations in the phase of the 
pairing order parameter will suppress a true superconducting phase transition, leading 
to strong local superconducting fluctuations at low temperatures. Unusual magnetic 
resonance properties recently measured in dilute Kondo systems may be intimately 
related to this feature [13]. 

We now go on to discuss the quasi-particle interactions in the normal Fermi liquid. 
Computation of these interactions from the Gaussian fluctuations about the mean-field 
theory follows lines similar to those used in l a r g e 4  approaches, but the calculation 
is slightly complicated by the delicate issue of removing the large class of zero-gauge 
modes from the fluctuations. This task is accomplished using the Fadeev-Popov 
method. First we decide in advance the coordinate system that defines the fluctuations 
about the gauge orbit, defining a plane f(U, V ,  W )  = 0 : thereby ‘fixing the gauge’. We 
then integrate over the gauge orbits passing through this plane, introducing a Fadeev- 
Popov determinant Y ( U ,  V ,  W )  into the path integral that measures the ‘length’ of the 

t We have not examined this special case in detail, however, it is tempting to suggest that, for a perfectly 
symmetric band, fluctuations about the mean-field theory might select 2 perpendicular to z^, which would 
then give rise to identical scattering phase shifts in the even- and odd-parity scattering channels, as discovered 
in the Wilson scaling. This behaviour would disappear in the presence of an asymmetric conduction band. 
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gauge orbit: 

Y ( U ,  V ,  W)-’ = dgSCf[Ug, Vg,  Wg]). s (94) 

The most convenient choice of gauge is an ‘axial gauge’. Consider an arbitrary fluctua- 
tion (U’,  V’, W’), in which we write V’ = -i( V ,  + 6 V )  exp(il2. T)Z~ This fluctuation lies 
on the same gauge orbit as the point (U’g, V’g, W’g). Choosing g = exp(-ii,. T), brings 
us to the unique point on the orbit where V = (VO + 6 V ) q ,  so the choice V cc 73 fixes 
the gauge. This gauge choice is the SU(2) analogue of the Newns and Read ‘radial 
gauge’ employed in the large-N approach to the Kondo problem [14]. The determinant 
for the axial gauge is a constant?, so the measure for V fluctuations in this gauge is 
simply 

(where the subscript denotes ‘axial’). For small fluctuations, the measures for V and U 
may be linearised 

where Uij = -iAij exp(iWij. T ) .  This permits us to examine the Gaussian fluctuations 
that couple the charged quasi-particle excitations in the normal phase. 

7 To calculate the determinant Y [VI for the axial gauge, we consider one site and write 

d[Vl,x,,r = d[VI Y[V1 6[hll 
1=0,2 

where we have put V = Voh where h is an SU(2) matrix h = h,sP = h . 7  -ihol. Using the Fadeev-Popov 
method 

hg = gh = h E T P .  

This is a constant, independent of VO, that factors out of the path integral. For completeness, note that 
d[g] = d[hg], thus 
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As in the large-N approach, the Gaussian fluctuaions define a 'quasi-particle 
interaction Hamiltonian' H I  whose expectation value in a two-quasi-particle state 
defines the Landau interaction constants 

where I=) is the mean-field Fermi liquid ground state and a J r k p F a  the corresponding 
quasi-particle operators (band index PF chosen for band at Fermi surface). It is 
interesting to contrast the interactions obtained in the SU(2) approach with those 
obtained in the large-N approach to the Kondo lattice model. Like the large-N 
expansion, the zero-frequency fluctuations in the constrained Lagrange multiplier field 
W give rise to a repulsive interaction between the f components of the quasi-particles. In 
the axial gauge, the fluctuations in W may be separated into components perpendicular 
and parallel to the SU(2) i axis. 

Fluctuations in W3 

H3 = 

U ,  = 

generate a repulsive interaction in the particle-hole channel : 

1 
2 - U q f  ?k+qaf  'k'a'fk'+qa'fkn 

kk'qau' 

When a quasi-particle propagates, the surrounding medium responds via this interaction 
by reducing the f charge density, preserving a constant f charge density Cftqf = 0). 
Unlike the large-N approach, analogous terms are generated in the Cooper channel by 
the fluctuations in W l  normal to the charge direction 

The perpendicular fluctuations arise because of the need to impose on the x and y 
components of the vector SU(2) the constraint f t j z f ,  = 0 when additional quasi- 
particles are added to the system. This interaction is not explicitly present in the 
large-N approach. However, like the diagonal terms, these terms are also repulsive of 
order TK and mainly local in character. 

At the Fermi surface, the quasi-particle excitations are almost entirely o f f  character 
(cos 6 k F  - l), so the local constraints generate the following contributions to the Fermi 
liquid interaction 

Note how the transverse fluctuations enhance the spin dependence of the interactions. 
In the one-impurity problem there is no q dependence of interactions, so the parallel 
spin interaction vanishes. This feature, combined with the zero f charge susceptibility 
is necessary for a Wilson ratio 2. 
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There are also fluctuations in the U field, corresponding to the renormalised RKKY 
interaction. These interactions are non-local in character, containing terms of the form 

(1. I’ = .x, y ,  z )  

where the G are the bond operators introduced in (15), GKG denotes Ga,jK,p~yi2~y and 

The forward-scattering component of these interactions in the Cooper channel generates 
pairing of the quasi-particles, whilst the q-independent part generates the renormalised 
nearest-neighbour RKKY interaction. Near the superconducting transition temperature, 
the forward scattering component of this interaction in the d-channel diverges. 

To conclude, we mention some general implications of our Kondo-stabilised picture 
of heavy fermion superconductivity. Firstly, we note that it is intrinsically a strong- 
coupling mechanism, relying on two basic pieces of physics: 

(i) that the Kondo effect preferentially stabilises a spin liquid against magnetism ; 
ti;; that the coherent coupling of a spin liquid to a conduction sea necessarily 

results in superconductivity. 
Transition temperatures that are a large fraction of the Kondo temperature are encom- 
passed in this picture, once J H  becomes comparable with or greater than T’K. In this 
regime, superconductivity can occur before a fully developed Fermi liquid has formed. 
The superconductor URe13 is a good candidate for this scenario. 

Secondly, we note that our mechanism has a new temperature scale associated with 
the mean-field T,. It is quite likely that fluctuation effects will suppress the actual T, 
well below this value, and the mean-field T, will be marked by a substantial growth in 
the short-length f spin correlations. Experimentalists have long explained the sudden 
changes in transport and thermodynamic properties of heavy fermion systems at low 
temperatures in terms of a phenomenological ‘coherence temperature’. This second 
scale, where the spin liquid starts to form and f spin correlations start to grow, would 
provide a convenient explanation of the ‘coherence temperature’. 

Finally. we mention the possibility of a unifying link between heavy fermion and 
cuprate superconductivity. Earlier we noted an interesting phase boundary between 
the superconducting and spin liquid phases which is probably not realised in three 
dimensions due to the formation of an antiferromagnet in preference to a pure spin 
liquid. However, in two dimensions, long-wavelength fluctuations affect an antiferrmo- 
magnetic state quite differently to a superconducting spin liquid. The long-wavelength 
spin fluctuations suppress TAFM to zero, or to the three-dimensional ordering temper- 
ature. By contrast, the mean-field transition temperature between the spin liquid and 
superconductor should give a good estimate of a Kosterlitz-Thouless transition into a 
superconducting state, and furthermore, a tiny three-dimensional Josephson coupling 
will drive a KT superconductor into a conventional 3D superconductor [15]. Hence, 
in a quasi-two-dimensional situation, a spin-liquid to superconducting transition may 
become feasible, We speculate that heavy fermion superconductivity and cuprate su- 
perconductivity are both forms of a Kondo-stabilised spin liquid, arrived at through 
different sequences of spin compensation. We are actively engaged in exploring this 
possiblity. 
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Appendix 

We now evaluate 

where 

and U = [ u . z  +iuo]. First note that f ( U )  does not depend on the choice of A, because 
of the integration over the gauge orbits of gi and gj, so we shall arbitrarily choose A = 2. 
Second, note that we can rewrite the four-dimensional delta function as 6 (oi j -gr l  U g j ) ,  
so f(g;' ugh) = f ( U )  is invariant under arbitrary gauge transformations of U .  Next, 
note that &, 4y and U ,  (a = [0,1,2,3]) each have the dimensions of energy, so the 
dimension of f(U) is [Up2]. The only gauge-invariant function with this dimension is 
proportional to 1 /Tr [U U ] ,  hence 

w 

where the constant CI is to be determined. To evaluate a, set U = i l ,  then 

2 = 2 1 d[gi] d[gj] d& d4y  S ( o i j  - ig;'gj). 
n 

Changing variables from (gi,gj) to (gi,g = g;'gj), and using the gauge invariance of 
the measures d[gi] d[gj] = d[gi] d[grlgj], the integral over gi then factors out to give 

a =  71 ~ d [ g ] d & d 4 y 6 ( ~ i j - i g ) .  

Finally, putting A = 2, g = ho + ih.7,  h = (hl,h2,h3), d[g] = ~ - ~ d ~ h , S [ h ~  - 11, 
(h2 = E, h;, p = 0,1,2,3) then gives 

2 
713 

a = - 1 d4h QX Wy 6 [h2 - 11 6 [hl - +.\.I 6 [ho - 6 [h216 [h31 

2 2 
dho dhl 6 [hi + h: - 11 = -. 

713 712 
= - 

yielding our final result f ( U )  = 2/[n2Tr(UtU)]. 
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